[Back]


Publications in Scientific Journals:

N.U Pucher, M. Siklos, A. Rosspeintner, A. Ajami, K. Cicha, G. Gscheidt, W. Husinsky, J. Stampfl, R. Liska:
"Optimization of feature resolution, processing window & structuring time for the two-photon polymerization (2PP) process by the use of novel initiators";
Proc. of LPM2010 - the 11th International Symposium on Laser Precision Microfabrication, - (2010), 1 - 6.



English abstract:
The two-photon polymerization (2PP) process of acrylate-based formulations has attracted much
attention of researchers in the last decade due the high spatial fabrication resolution (~100 nm) of
shapes and components below the diffraction limit of the used wavelength. This nonlinear optical
method has opened the way for potential "future" applications in the fie ld of micro mechan ical and
microoptical devices, 3D optical data storage, polymer-based optical waveguides on integrated circuit
boards and the like. The development of optimized two-photon init iators is essential in order to
fulfill the challenging requirements on this technique. Therefore, within this paper the synthesis and
characterization of a series of quadropolar, cross -conjugated D- -A- -D-based init iators with 1,5-
bis(4-(N,N-dimethylamino)phenyl)penta-1,4-diyn-3-one (M3K) as lead structure is presented, subsequently
leading to novel highly efficient initiators .

Keywords:
two-photon polymerization, photoinitiator, z-scan, laser structuring, parameter search


Related Projects:
Project Head Jürgen Stampfl:
Herstellung planarer Wellenleiter mit Zweiphotonenpolymerisation

Project Head Jürgen Stampfl:
ISOTEC III - Integrated Organic Sensor and Optoelectronic Technologies (Phase 3)


Created from the Publication Database of the Vienna University of Technology.