[Zurück]


Zeitschriftenartikel:

C. Carstensen, D. Praetorius:
"Stabilization yields strong convergence of macroscopic magnetization vectors for micromagnetics without exchange energy";
Journal of Numerical Mathematics, 20 (2012), 2; S. 81 - 109.



Kurzfassung englisch:
The convexified Landau-Lifshitz minimization problem in micromagnetics leads
to a degenerate variational problem. Therefore strong convergence of finite
element approximations cannot be expected in general.
This paper introduces a stabilized finite element discretization which allows
for the strong convergence of the discrete magnetization fields with reduced
convergence order for a uniaxial model problem. This yields a convergent
method for the approximation of the Young measure describing the
microstructure for the generalized solution of the non-relaxed Landau-Lifshitz
problem.


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1515/jnum-2012-0004


Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.