[Zurück]


Zeitschriftenartikel:

I. Nemec, R. Herchel, I. Salitros, Z. Trávníček, J. Monco, H. Fuess, M. Ruben, W. Linert:
"Anion driven modulation of magnetic intermolecular interactions and spin crossover properties in an isomorphous series of mononuclear iron(III) complexes with a hexadentate Schiff base ligand";
CRYSTENGCOMM, 14 (2012), S. 7015 - 7024.



Kurzfassung englisch:
A series of spin crossover iron(III) complexes with the general composition [Fe(4OH-L6)]X (H2-4OH-L6 = 1,8-bis(4-hydroxysalicylaldiminato)-3,6-diazaoctane; X = Cl, 1a; Br, 1b; I, 1c) was prepared. A combination of the results following the single crystal X-ray analysis, infrared and EPR spectroscopy, and temperature dependent magnetic experiments revealed that the Fe(III) atoms occur in the low-spin state below room temperature and the crystal structures of the complexes involve rich networks of non-covalent intermolecular contacts resulting in two-dimensional supramolecular structures. Alterations in the halide anions influence the strength of the non-covalent contacts and affect the magnetic properties of the studied complexes. The antiferromagnetic exchange interaction between the non-covalently bound cations is the most obvious in the case of 1a and it weakens with the growing anionic volume of X. The 1D and 2D spin Hamiltonian models were applied to quantitatively extract the information about the intermolecular magnetic exchange (fit on 1D infinite chain gives J(1a) = −2.86 cm−1, J(1b) = −2.02 cm−1, J(1c) = −1.16 cm−1). Furthermore, gradual spin crossover behaviour for all of the compounds of the series was observed above room temperature in the solid state. Spin crossover accompanied by thermochromism was also demonstrated by EPR experiments in solution.


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1039/c2ce25862e


Erstellt aus der Publikationsdatenbank der Technischen Universität Wien.