[Zurück]


Zeitschriftenartikel:

M. Karkulik, G. Of, D. Praetorius:
"Convergence of adaptive 3D BEM for weakly singular integral equations based on isotropic mesh-refinement";
Numerical methods for partial differential equations, 29 (2013), 6; S. 2081 - 2106.



Kurzfassung englisch:
We consider the adaptive lowest-order boundary element method (ABEM) based on isotropic mesh-refinement for the weakly-singular integral equation for the 3D Laplacian.
The proposed scheme resolves both,
possible singularities of the solution as well as of the given data.
The implementation thus only deals with discrete integral operators, i.e. matrices.
We prove that the usual adaptive mesh-refining algorithm drives the corresponding error estimator to zero.
Under an appropriate saturation assumption which is observed empirically, the sequence of discrete solutions thus tends to the exact solution within the energy norm.

Schlagworte:
adaptive boundary element method, adaptive algorithms, error reduction, fast multipole method.


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1002/num.21792


Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.