[Zurück]


Zeitschriftenartikel:

G. Fuchs, V. Satek, V. Vopenka, J. Kunovsky, M. Kozek et al.:
"Application of the Modern Taylor Series Method to a multi-torsion chain";
Simulation Modelling Practice and Theory (eingeladen), 33 (2013), S. 89 - 101.



Kurzfassung englisch:
In this paper the application of a novel high accuracy numerical integration method is presented for a practical mechanical engineering application. It is based on the direct use of
the Taylor series. The main idea is a dynamic automatic order setting, i.e. using as many Taylor series terms for computing as needed to achieve the required accuracy. Previous results have already proved that this numerical solver is both very accurate and fast. In this paper the performance is validated for a real engineering assembly and compared to a Jacobian power series method. The chosen experiment setup is a multi-torsional oscillator chain which reproduces typical dynamic behavior of industrial mechanical engineering problems. Its rotatory dynamics are described by linear differential equations. For the test series the system is operated in a closed-loop configuration. A reference solution of the linear
differential equations of the closed-loop system for the output variable is obtained with the mathematical software tool Maple and validated by comparison to measurements from the experiment. The performance of the Modern Taylor Series Method is demonstrated by
comparison to standard fixed-step numerical integration methods from the software tool Matlab/Simulink and to the Jacobian power series approximation. Furthermore, the improvement in numerical accuracy as well as stability is illustrated and CPU-times for the different methods are given.

Schlagworte:
Simulation, Taylor series, Numerical integration, Torsional chain


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1016/j.simpat.2012.10.002


Erstellt aus der Publikationsdatenbank der Technischen Universität Wien.