[Back]


Publications in Scientific Journals:

C. Rameshan, H. Lorenz, L. Mayr, S. Penner, D. Zemlyanov, R. Arrigo, M. Hävecker, R. Blume, A. Knop-Gericke, R. Schlögl, B. Klötzer:
"CO2-selective methanol steam reforming on In-doped Pd studied by ambient pressure X-ray photoelectron spectroscopy";
Journal of Catalysis, 295 (2012), 186 - 194.



English abstract:
In situ X-ray photoelectron spectroscopy (in situ XPS) was used to study the structural and catalytic properties of Pd-In near-surface intermetallic phases in correlation with previously studied PdZn and PdGa.

Room temperature deposition of ∼4 monolayer equivalents (MLEs) of In metal on Pd foil and subsequent annealing to 453 K in vacuum yields a ∼1:1 Pd/In near-surface multilayer intermetallic phase. This Pd1In1 phase exhibits a similar "Cu-like" electronic structure and indium depth distribution as its methanol steam reforming (MSR)-selective multilayer Pd1Zn1 counterpart.

Catalytic characterization of the multilayer Pd1In1 phase in MSR yielded a CO2-selectivity of almost 100% between 493 and 550 K. In contrast to previously studied In2O3-supported PdIn nanoparticles and pure In2O3, intermediate formaldehyde is only partially converted to CO2 using this Pd1In1 phase. Strongly correlated with PdZn, on an In-diluted PdIn intermetallic phase with "Pd-like" electronic structure, prepared by thermal annealing at 623 K, methanol steam reforming is suppressed and enhanced CO formation via full methanol dehydrogenation is observed.

To achieve CO2-TOF values on the isolated Pd1In1 intermetallic phase as high as on supported PdIn/In2O3, at least 593 K reaction temperature is required. A bimetal-oxide synergism, with both bimetallic and oxide synergistically contributing to the observed catalytic activity and selectivity, manifests itself by accelerated formaldehyde-to-CO2 conversion at markedly lowered temperatures as compared to separate oxide and bimetal. Combination of suppression of full methanol dehydrogenation to CO on Pd1In1 inhibited inverse water-gas-shift reaction on In2O3 and fast water activation/conversion of formaldehyde is the key to the low-temperature activity and high CO2-selectivity of the supported catalyst.

Keywords:
PdIn near-surface alloy; Pd foil; Methanol dehydrogenation; Methanol steam reforming; Water activation; In situ X-ray photoelectron spectroscopy (AP-XPS)


"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)
http://dx.doi.org/10.1016/j.jcat.2012.08.008


Created from the Publication Database of the Vienna University of Technology.