W. Auzinger, H. Hofstätter, O. Koch, M. Thalhammer:
"Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part III. The nonlinear case";
Journal of Computational and Applied Mathematics, 273 (2014), S. 182 - 204.

Kurzfassung englisch:
The present work is concerned with the efficient time integration of nonlinear evolution equations by exponential operator splitting methods. Defect-based local error estimators serving as a reliable basis for adaptive stepsize control are constructed and analyzed. In the context of time-dependent nonlinear Schrödinger equations, asymptotical correctness of the local error estimators
associated with the first-order Lie-Trotter and second-order Strang splitting methods is proven. Numerical examples confirm the theoretical results and illustrate the performance of adaptive stepsize control.

"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)

Elektronische Version der Publikation:

Zugeordnete Projekte:
Projektleitung Othmar Koch:
Adaptives Splitting für nichtlineare Schrödingergleichungen

Erstellt aus der Publikationsdatenbank der Technischen Universität Wien.