[Zurück]


Zeitschriftenartikel:

A. Mahdavi, K. Kiesel, M. Vuckovic:
"Empircial and computational assessment of the urban heat island phenomenon and related mitigation measures";
Geographica Polonica, 87 (2014), 4; S. 77 - 88.



Kurzfassung deutsch:
none see english version

Kurzfassung englisch:
A central strand of research work in the realm of urban physics aims at a better understanding of the variance
in microclimatic conditions due to factors such as building agglomeration density, anthropogenic heat
production, traffic intensity, presence and extent of green areas and bodies of water, etc. This research has
been motivated in part by phenomena associated with climate change and urban heat islands (UHI) and their
implications for the urban microclimate. Note that the characteristics and evolution of the urban microclimate
is not only relevant to people´s experience of outdoor thermal conditions in the cities. It can be argued that the
solid understanding of the temporal and spatial variance of urban microclimate represents a prerequisite for
the reliable assessment of the thermal performance of buildings (energy requirements, indoor thermal conditions).
In this context, the present paper entails a three-fold contribution. First, the existence and extent of the
UHI phenomena are documented for a number of Central-European cities. Second, a number of variables
of the urban environment are identified that are hypothesized to influence UHI and the urban microclimate
variance. These variables, which pertain to both geometric (morphological) and semantic (material-related)
urban features are captured within a formal and systematic framework. Third, to support the process of design
and evaluation of UHI mitigation measures, the potential of both numerical (simulation-based) applications
and empirically-based urban microclimate models are explored.

Schlagworte:
urban climate, urban heat island, mitigation measure, modeling, evaluation

Erstellt aus der Publikationsdatenbank der Technischen Universität Wien.