[Zurück]


Zeitschriftenartikel:

M. Feischl, T. Führer, M. Karkulik, J. Melenk, D. Praetorius:
"Quasi-optimal convergence rates for adaptive boundary element methods with data approximation - Part II: Hyper-singular integral equation";
Electron. Trans. Numer. Anal., 44 (2015), S. 153 - 176.



Kurzfassung englisch:
We analyze an adaptive boundary element method with fixed-order piecewise polynomials for the hyper-singular integral equation of the Laplace-Neumann problem in 2D and 3D which incorporates the approximation of the given Neumann data into the overall adaptive scheme. The adaptivity is driven by some residual-error estimator
plus data oscillation terms. We prove convergence even with quasi-optimal rates. Numerical experiments underline the theoretical results.

Schlagworte:
boundary element method, hyper-singular integral equation, a posteriori error estimate, adaptive algorithm, convergence, optimality


Elektronische Version der Publikation:
http://etna.ricam.oeaw.ac.at/vol.44.2015/pp153-176.dir/pp153-176.pdf


Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.