[Zurück]


Zeitschriftenartikel:

N. Pobiedina, R. Ichise:
"Citation count prediction as a link prediction problem";
Applied Intelligence, Volume 42, Special Issue: Advances in Applied Artificial Intelligence (2015), 3; S. 1 - 17.



Kurzfassung englisch:
The citation count is an important factor to estimate the relevance and significance of academic publications. However, it is not possible to use this measure for papers which are too new. A solution to this problem is to estimate the future citation counts. There are existing works, which point out that graph mining techniques lead to the best results. We aim at improving the prediction of future citation counts by introducing a new feature. This feature is based on frequent graph pattern mining in the so-called citation network constructed on the basis of a dataset of scientific publications. Our new feature improves the accuracy of citation count prediction, and outperforms the state-of-the-art features in many cases which we show with experiments on two real datasets.

Schlagworte:
Citation count; Graph pattern mining; Feature selection


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1007/s10489-015-0657-y


Erstellt aus der Publikationsdatenbank der Technischen Universität Wien.