[Zurück]


Zeitschriftenartikel:

M. Feischl, T. Führer, G. Gantner, A. Haberl, D. Praetorius:
"Adaptive boundary element methods for optimal convergence of point errors";
Numerische Mathematik, 132 (2016), 3; S. 541 - 567.



Kurzfassung englisch:
One particular strength of the boundary element method is that it allows for a high-order
pointwise approximation of the solution of the related partial differential equation via the
representation formula. However, the high-order convergence and hence accuracy
usually suffers from singularities of the Cauchy data. We propose two adaptive
mesh-refining algorithms and prove their quasi-optimal convergence behavior with
respect to the point error in the representation formula. Numerical examples for the
weakly-singular integral equations for the 2D and 3D Laplacian underline our theoretical
findings.

Schlagworte:
adaptive boundary element method, optimal convergence rates, point error, goal-oriented algorithm.


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1007/s00211-015-0727-4


Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.