M. Feischl, T. Führer, D. Praetorius, E. Stephan:
"Optimal preconditioning for the symmetric and non-symmetric coupling of adaptive finite elements and boundary elements";
Numerical methods for partial differential equations, 33 (2017), 3; S. 603 - 632.

Kurzfassung englisch:
We analyze a multilevel diagonal additive Schwarz preconditioner for the adaptive coupling of FEM and BEM for a linear 2D Laplace transmission problem. We rigorously prove that the condition number of the preconditioned system stays uniformly bounded, independently
of the refinement level and the local mesh-size of the underlying adaptively refined triangulations. Although the focus is on the non-symmetric Johnson-N´ed´elec one equation coupling, the principle ideas also apply to other formulations like the symmetric
FEM-BEM coupling. Numerical experiments underline our theoretical findings.

FEM-BEM coupling, preconditioner, multilevel additive Schwarz, adaptivity.

"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)

Erstellt aus der Publikationsdatenbank der Technischen Universität Wien.