Talks and Poster Presentations (with Proceedings-Entry):

B. Biesinger, B. Hu, G. Raidl:
"A Variable Neighborhood Search for the Generalized Vehicle Routing Problem with Stochastic Demands";
Talk: Evolutionary Computation in Combinatorial Optimization - EvoCOP 2015, Kopenhagen, Dänemark; 2015-04-08 - 2015-04-10; in: "Evolutionary Computation in Combinatorial Optimization - EvoCOP 2015", G. Ochoa, F. Chicano (ed.); Springer, 9026 (2015), ISBN: 978-3-319-16467-0; 48 - 60.

English abstract:
In this work we consider the generalized vehicle routing problem with stochastic demands (GVRPSD) being a combination of the generalized vehicle routing problem, in which the nodes are partitioned into clusters, and the vehicle routing problem with stochastic demands, where the exact demands of the nodes are not known beforehand. It is an NP-hard problem for which we propose a variable neighborhood search (VNS) approach to minimize the expected tour length through all clusters. We use a permutation encoding for the cluster sequence and consider the preventive restocking strategy where the vehicle restocks before it potentially runs out of goods. The exact solution evaluation is based on dynamic programming and is very time-consuming. Therefore we propose a multi-level evaluation scheme to significantly reduce the time needed for solution evaluations. Two different algorithms for finding an initial solution and three well-known neighborhood structures for permutations are used within the VNS. Results show that the multi-level evaluation scheme is able to drastically reduce the overall run-time of the algorithm and that it is essential to be able to tackle larger instances. Acomparison to an exact approach shows that the VNS is able to find an optimal or near-optimal solution in much shorter time.

generalized vehicle routing problem, stochastic vehicle routing problem, variable neighborhood search, stochastic optimization

"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)

Related Projects:
Project Head Günther Raidl:
Lösungsarchive für Evolutionäre Kombinatorische Optimierung

Created from the Publication Database of the Vienna University of Technology.