[Zurück]


Vorträge und Posterpräsentationen (mit Tagungsband-Eintrag):

N. Rekabsaz, R. Bierig, B. Ionescu, A. Hanbury, M. Lupu:
"On the use of statistical semantics for metadata-based social image retrieval";
Poster: 13th International Workshop on Content-Based Multimedia Indexing (CBMI 2015), Prague; 10.06.2015 - 12.06.2015; in: "On the use of statistical semantics for metadata-based social image retrieval", IEEE, 15292549 (2015), S. 1 - 4.



Kurzfassung englisch:
We revisit text-based image retrieval for social media, exploring the opportunities offered by statistical semantics. We assess the performance and limitation of several complementary corpus-based semantic text similarity methods in combination with word representations. We compare results with state-of-the-art text search engines. Our deep learning-based semantic retrieval methods show a statistically significant improvement in comparison to a best practice Solr search engine, at the expense of a significant increase in processing time. We provide a solution for reducing the semantic processing time up to 48% compared to the standard approach, while achieving the same performance.

Schlagworte:
image retrieval;learning (artificial intelligence);social networking (online);statistical analysis;text analysis;Solr search engine;corpus-based semantic text similarity methods;deep learning-based semantic retrieval methods;metadata-based social image re


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1109/CBMI.2015.7153634

Elektronische Version der Publikation:
http://publik.tuwien.ac.at/files/PubDat_245113.pdf


Erstellt aus der Publikationsdatenbank der Technischen Universität Wien.