C. Brennecke, A. Linke, C. Merdon, J. Schöberl:
"Optimal and pressure-independent L2 velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM";
Journal of Computational Mathematics, 33 (2015), 2; S. 191 - 208.

Kurzfassung englisch:
Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the velocity error become pressure-dependent, while divergence-free mixed finite elements deliver pressure-independent estimates. A recently introduced new variational crime using lowest-order Raviart-Thomas velocity reconstructions delivers a much more robust modified Crouzeix-Raviart element, obeying an optimal pressure-independent discrete H¹ velocity estimate. Refining this approach, a more sophisticated variational crime employing the lowest-order BDM element is proposed, which also allows proving an optimal pressure-independent L² velocity error. Numerical examples confirm the analysis and demonstrate the improved robustness in the Navier-Stokes case.

Variational crime, Crouzeix-Raviart finite element, Divergence-free mixed method, Incompressible Navier-Stokes equations, A priori error estimates.

"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)

Elektronische Version der Publikation:

Erstellt aus der Publikationsdatenbank der Technischen Universität Wien.