[Zurück]


Zeitschriftenartikel:

M. Halla, T. Hohage, L. Nannen, J. Schöberl:
"Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs";
Numerische Mathematik, 131 (2015), 4; S. 1 - 37.



Kurzfassung englisch:
Abstract We consider time harmonic wave equations in cylindrical wave-guides with
physical solutions for which the signs of group and phase velocities differ. The perfectly
matched layer methods select modes with positive phase velocity, and hence they
yield stable, but unphysical solutions for such problems.We derive an infinite element
method for a physically correct discretization of such wave-guide problems which
is based on a Laplace transform in propagation direction. In the Laplace domain the
space of transformed solutions can be separated into a sum of a space of incoming
and a space of outgoing functions where both function spaces are Hardy spaces of
a curved domain. The Hardy space is constructed such that it contains a simple and
convenient Riesz basis with small condition numbers. In this paper the new method
is only discussed for a one-dimensional fourth order model problem. Exponential


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1007/s00211-015-0739-0

Elektronische Version der Publikation:
http://publik.tuwien.ac.at/files/PubDat_246145.pdf


Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.