A. Asinowski, C. Krattenthaler, T. Mansour:
"Counting triangulations of some classes of subdivided convex polygons";
arXiv.org e-Print archive, * (2016), 1604.02870; 26 S.

Kurzfassung englisch:
We compute the number of triangulations of a convex k -gon each of whose sides is subdivided by r−1 points. We find explicit formulas and generating functions, and we determine the asymptotic behaviour of these numbers as k and/or r tend to infinity. We connect these results with the question of finding the planar set of points in general position that has the minimum possible number of triangulations - a well-known open problem from computational geometry.

Combinatorics, Computational Geometry

Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.