R. Glawar, Z. Kemeny, T. Nemeth, K. Matyas, L. Monostori, W. Sihn:
"A holistic approach for quality oriented maintenance planning supported by data mining methods";
Procedia CIRP, 57 (2016), S. 259 - 264.

Kurzfassung englisch:
Appropriate maintenance measures, which are carried out at the right time are a key factor to secure plant availability, product quality and process efficiency in modern manufacturing systems. Established maintenance strategies oftentimes lack in combining these strongly related aspects. They are not capable to anticipate in a holistic way and therefore lead to unnecessarily high maintenance efforts, wasted resources and the occurrence of quality and availability impairments.
In order to realize a holistic and anticipatory approach for maintenance planning, a methodology which consistently compiles and correlates various data via "cause and effect" coherences is depicted. By breaking down the production facilities on component level a basis is set to link condition monitoring data, wear data, quality and production data by using data mining methods. This framework enables the identification of maintenance-critical conditions and the prediction of failure moments and quality deviations.

Maintenance, Predictive Model, Quality,Data Mining, Manufacturing system

"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)

Elektronische Version der Publikation:

Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.