[Zurück]


Beiträge in Tagungsbänden:

M. Drmota, G. Collet, L. Klausner:
"Vertex Degrees in Planar Maps";
in: "Proceedings of the 27th International Conference on Probalistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms", R. Neininger, M. Zaionc (Hrg.); AofA, Krakow, Polen, 2016.



Kurzfassung englisch:
We prove a general multi-dimensional central limit theorem for the expected number of vertices of a given degree in the family of planar maps whose vertex degrees are restricted to an arbitrary (finite or infinite) set of positive integers D. Our results rely on a classical bijection with mobiles (objects exhibiting a tree structure), combined with refined analytic tools to deal with the systems of equations on infinite variables that arise. We also discuss some possible extension to maps of higher genus.

Schlagworte:
Planar Maps, Central Limit Theorem, Analytic Combinatorics, Mobiles


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.48550/arXiv.1605.04206


Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.