[Back]


Talks and Poster Presentations (with Proceedings-Entry):

B. Székely, A. Kania, T. Standovár, H. Heilmeier:
"Evaluation of vertical lacunarity profiles in forested areas using airborne laser scanning point clouds";
Talk: XXIII ISPRS Congress, Prague, Czechia; 07-12-2016 - 07-19-2016; in: "XXIII ISPRS Congress", ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, III-8 (2016), ISSN: 2194-9042; 93 - 99.



English abstract:
The horizontal variation and vertical layering of the vegetation are important properties of the canopy structure determining the habitat; three-dimensional (3D) distribution of objects (shrub layers, understory vegetation, etc.) is related to the environmental factors (e.g., illumination, visibility). It has been shown that gaps in forests, mosaic-like structures are essential to biodiversity; various methods have been introduced to quantify this property. As the distribution of gaps in the vegetation is a multi-scale phenomenon, in order to capture it in its entirety, scale-independent methods are preferred; one of these is the calculation of lacunarity.

We used Airborne Laser Scanning point clouds measured over a forest plantation situated in a former floodplain. The flat topographic relief ensured that the tree growth is independent of the topographic effects. The tree pattern in the plantation crops provided various quasi-regular and irregular patterns, as well as various ages of the stands. The point clouds were voxelized and layers of voxels were considered as images for two-dimensional input. These images calculated for a certain vicinity of reference points were taken as images for the computation of lacunarity curves, providing a stack of lacunarity curves for each reference points. These sets of curves have been compared to reveal spatial changes of this property. As the dynamic range of the lacunarity values is very large, the natural logarithms of the values were considered. Logarithms of lacunarity functions show canopy-related variations, we analysed these variations along transects. The spatial variation can be related to forest properties and ecology-specific aspects.

Keywords:
Lacunarity, Airborne Laser Scanning, Point Clouds, Voxelization, Canopy Structure, Planted Forest


"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)
http://dx.doi.org/10.5194/isprsannals-III-8-93-2016


Created from the Publication Database of the Vienna University of Technology.