[Zurück]


Diplom- und Master-Arbeiten (eigene und betreute):

L. Heißenberger:
"Biodegradable thermoplastic polyurethanes for vascular tissue regeneration: synthesis of alternative/new building blocks";
Betreuer/in(nen): R. Liska, C. Dworak; Institut für Angewandte Synthesechemie E-163, 2015; Abschlussprüfung: 03.12.2015.



Kurzfassung deutsch:
Im Laufe der letzten Jahrzehnte entwickelten sich Herzkreislauferkrankung zur weltweit führenden Todesursache. Dadurch stieg auch die Nachfrage an Materialien zur/zum Behandlung/Ersatz von versagenden Blutgefäßen.
Tissue engineering von Blutgefäßersatzmaterialien ist ein vielversprechender Ansatz um diesen Bedarf zu decken. Obwohl Ersatzmaterialien für Gefäße mit großem Durchmesser erfolgreich eingesetzt wurden, schlugen die Versuche, diese Materialen für Gefäße mit kleinerem Durchmesser zu etablieren, fehl. Als mögliche Ursachen dafür werden fehlende Blutkompatibilität als auch zu unterschiedliche mechanische Eigenschaften gegenüber natürlichen Blutgefäßen angenommen.
Eine mögliche Lösung dieses Problems könnte der Einsatz von thermoplastischen Polyurethanen (TPUs) als innovatives Blutgefäßersatzmaterial liefern.
Diese Klasse von Polymeren zeichnet sich durch gute Biokompatibilität und gute mechanische Eigenschaften aus und kann dabei sowohl aus Schmelze als auch in Lösung verarbeitet werden. Der segmentierte Aufbau dieser Polymere - bestehend aus einem Makrodiol als flexiblem Softblock und eine Kombination aus einem Diisocyanat und einem Chainextender, als festem Hardblock - erlaubt es durch Änderung der verwendeten Ausgangsstoffe sowohl die mechanischen Eigenschaften als auch das Abbauverhalten zu beeinflussen.
Im Rahmen dieser Arbeit sollten Blutgefäßersatzmaterialien mit im Vergleich zu bisher in unserer Arbeitsgruppe entwickelter Materialien stark erhöhten Abbauraten entwickelt werden. Es sollten Materialien synthetisiert werden bei denen sowohl der Softblock als auch der Hardblock biologisch abgebaut werden kann. Um höchst mögliche Verträglichkeit zu gewährleisten, sollte weitestgehend versucht werden auf Bestandteile, die zu sauren Abbauprodukten und in Folge zu Entzündungsreaktionen des umliegenden Gewebes führen, zu verzichten.
Um dieses Ziel zu erreichen wurden neue Polyurethane durch Kombination von Polytetrahydrofuran oder eines Polyethercarbonats als Softblock mit verschiedenen Kettenverlängerern, darunter Bis(2-hydroxyethyl)terephthalat, Bis(2-hydroxyethyl)disulfid synthetisiert. Weiters wurde versucht neue Kettenverlängerer auf Basis von Thiazolidinverbindungen, Ketalen und Phosphorsäureestern zu synthetisieren. In allen Polyurethanen sollte Hexamethylendiisocyanat als Hardblock verwendet werden.
In der Folge wurden die hergestellten Polymere auf ihre Tauglichkeit für den Einsatz im Bereich des vaskulären Tissue Engineerings, durch Ermittlung der mechanischen Eigenschaften und des Abbauverhaltens, untersucht.

Kurzfassung englisch:
In the last decades cardiovascular diseases have become the number one single cause of death throughout the world. Naturally the demand for substitute materials to replace failing tissue related to these diseases increased as well.
Vascular tissue engineering is a promising approach to meet these demands. Although there are synthetic materials available that can replace large diameter blood vessels, small diameter blood vessels of the same materials failed. Compliance and elastic mismatch as well as low hemocompatibility are considered to be the main reasons for failure.
Thermoplastic polyurethane materials (TPUs) might offer a new approach for designing small diameter vascular grafts.
This type of polymer usually shows good biocompatibility as well as elastomeric properties and usually can be processed from melt as well as from solution. The segmented configuration of these polyurethanes - consisting of a macrodiol, as flexible soft block, and a combination of diisocyanate and chain extender, as a rigid hard block - allows tuning of its final properties, such as mechanical properties and degradation, just by changing the building blocks.
The aim of this work was the synthesis of faster degrading TPUs compared to previously developed materials within our working group. These new materials were supposed to show soft block- and hard block degradability as well as suitable mechanical properties for the use in vascular tissue engineering and they should be processed by electrospinning.
To ensure highest possible biocompatibility the use of ester-based building blocks, which lead to acidic degradation products that can cause inflammatory reactions within the surrounding tissue, was supposed to be minimial.
In order to achieve this goal various polymers with either poly(tetrahydrofuran) or a new PEG-carbonate as soft block and combining them with different chain extenders including bis(2-hydroxyethyl)terephthalate, bis(2-hydroxyethyl)disulfide and newly synthesized thiazolidine compounds, ketals and organophosphates were prepared. As hard block only hexamethylene diisocyanate was used.
The higher hydrophilicity due to the ether moieties paired with the higher number of carbonate groups compared to already used polycarbonates and polyether soft blocks in the backbone of the polymer were expected to accelerate degradation with the chain extenders enhancing this effect.
The obtained materials were tested towards degradability and mechanical properties and compared to reference materials, to evaluate the most suitable polyurethane for the use in vascular tissue engineering.

Schlagworte:
Herzkreislauferkrankung, Blutgefäße, Blutgefäßersatzmaterialien, Polymere, Biokompatibilität, Tissue Engineering

Erstellt aus der Publikationsdatenbank der Technischen Universität Wien.