[Back]


Publications in Scientific Journals:

F. Iglesias Vazquez, T. Zseby:
"Pattern Discovery in Internet Background Radiation";
IEEE Transactions on Big Data, PP (2017), 99; 1 - 14.



English abstract:
Internet Background Radiation (IBR) is observed in empty network address spaces. No traffic should arrive there, but it does in overwhelming quantities, gathering evidences of attacks, malwares and misconfigurations. The study of IBR helps to detect spreading network problems, common vulnerabilities and attack trends. However, network traffic data evolves quickly and is of high volume and diversity, i.e., an outstanding big data challenge. When used to assist network security, it also requires the online classification of dynamic streaming data. In this paper, we introduce an AGgregation & Mode (AGM) vector to represent network traffic. The AGM format characterizes IP hosts by extracting aggregated and mode values of IP header fields, and without inspecting payloads. We performed clustering and statistical analysis to explore six months of IBR from 2012 with the AGM mapping. The discovered patterns allow building a classification of IBR, which identifies phenomena that have been actively polluting the Internet for years. The AGM representation is light and tailored for monitoring and pattern discovery. We show that AGM vectors are suitable to analyze large volumes of network traffic: they capture permanent operations, such as long term scanning, as well as bursty events from targeted attacks and short term incidents.

Keywords:
traffic analysis, pattern recognition, clustering


"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)
http://dx.doi.org/10.1109/TBDATA.2017.2723893

Electronic version of the publication:
http://ieeexplore.ieee.org/document/7970183/


Created from the Publication Database of the Vienna University of Technology.