[Zurück]


Zeitschriftenartikel:

G. Gantner, A. Haberl, D. Praetorius, B. Stiftner:
"Rate optimal adaptive FEM with inexact solver for nonlinear operators";
IMA J. Numer. Anal., 38 (2018), 4; S. 1797 - 1831.



Kurzfassung englisch:
We prove convergence with optimal algebraic rates for an adaptive finite element method for nonlinear equations with strongly monotone operator. Unlike prior works, our analysis also includes the iterative and inexact solution of the arising nonlinear
systems by means of the Picard iteration. Using nested iteration, we prove, in particular, that the number of of Picard iterations is uniformly bounded in generic cases, and the overall computational cost is (almost) optimal. Numerical experiments confirm the
theoretical results.

Schlagworte:
quasilinear elliptic PDE, finite element method, adaptive mesh-refinement, adaptive solution of nonlinear algebraic system, optimal convergence rates, Banach fixed point theorem.


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1093/imanum/drx050


Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.