[Back]


Talks and Poster Presentations (with Proceedings-Entry):

S. Eikemeier, A. Mahdavi, R. Wimmer:
"Simulation-Supported Early Stage Design Optimisation for a Case Study of Life Cycle Oriented Buildings";
Talk: enviBUILD2017 - Buildings and Environment - From Research to Application, TU Wien, Vienna, Austria; 2017-09-07 - 2017-09-08; in: "12th international enviBUILD conference 2017 - Buildings and Environments - From Research to Application", U. Pont, M. Schuss, A. Mahdavi (ed.); Department of Building Physics and Building Ecology, TU Wien, (2017), 18.



English abstract:
To reduce the energy and resource consumption in the building sector this study is focusing on a design optimisation of life cycle oriented buildings. In order to optimise the performance of the buildings and in consequence also to achieve improved results for the mandatory Austrian energy certificate a simulation-based rapid design approach is used for the early stage design phase of the buildings, in particular for the architectural design of the buildings.Methods like the Window to Wall Ratio, at the very beginning of the design process, a parametric simulation with EnergyPlus or a more detailed optimisation approach with GenOpt are integrated in this study applied to example buildings. The results are showing that the method can be used in a circular approach for improving the heating demand of the Austrian energy certificate for this case study by more than 25 % compared to the preliminary design

German abstract:
(no german version) To reduce the energy and resource consumption in the building sector this study is focusing on a design optimisation of life cycle oriented buildings. In order to optimise the performance of the buildings and in consequence also to achieve improved results for the mandatory Austrian energy certificate a simulation-based rapid design approach is used for the early stage design phase of the buildings, in particular for the architectural design of the buildings.Methods like the Window to Wall Ratio, at the very beginning of the design process, a parametric simulation with EnergyPlus or a more detailed optimisation approach with GenOpt are integrated in this study applied to example buildings. The results are showing that the method can be used in a circular approach for improving the heating demand of the Austrian energy certificate for this case study by more than 25 % compared to the preliminary design

Keywords:
Dynamic Simulation, Sustainable Building, Energy-Efficiency, Heating Demand, Energy Certificate


Electronic version of the publication:
http://bpi.tuwien.ac.at/envibuild/enviBUILD2017_book_of_abstracts.pdf


Created from the Publication Database of the Vienna University of Technology.