Publications in Scientific Journals:

K. Füreder, K. Svardal, W. Frey, H. Kroiss, J. Krampe:
"Energy consumption of agitators in activated sludge tanks - actual state and optimization potential";
Water Science and Technology, 77 (2018), 3; 800 - 808.

English abstract:
Depending on design capacity, agitators consume about 5 to 20% of the total energy consumption of a wastewater treatment plant. Based on inhabitant-specific energy consumption (kWh PE120-1 a-1; PE120 is population equivalent, assuming 120 g chemical oxygen demand per PE per day), power density (W m-3) and volume-specific energy consumption (Wh m-3 d-1) as evaluation indicators, this paper provides a sound contribution to understanding energy consumption and energy optimization potentials of agitators. Basically, there are two ways to optimize agitator operation: the reduction of the power density and the reduction of the daily operating time. Energy saving options range from continuous mixing with low power densities of 1 W m-3 to mixing by means of short, intense energy pulses (impulse aeration, impulse stirring). However, the following correlation applies: the shorter the duration of energy input, the higher the power density on the respective volume-specific energy consumption isoline. Under favourable conditions with respect to tank volume, tank geometry, aeration and agitator position, mixing energy can be reduced to 24 Wh m-3 d-1 and below. Additionally, it could be verified that power density of agitators stands in inverse relation to tank volume.

"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)

Created from the Publication Database of the Vienna University of Technology.