Publications in Scientific Journals:

N. Rekabsaz, R. Bierig, M. Lupu, A. Hanbury:
"Toward Optimized Multimodal Concept Indexing";
Journal of Transactions on Computational Collective Intelligence (TCCI), 10190 (2017), XXVI; 144 - 161.

English abstract:
Information retrieval on the (social) web moves from a pure term-frequency-based approach to an enhanced method that includes conceptual multimodal features on a semantic level. In this paper, we present an approach for semantic-based keyword search and focus especially on its optimization to scale it to real-world sized collections in the social media domain. Furthermore, we present a faceted indexing framework and architecture that relates content to semantic concepts to be indexed and searched semantically. We study the use of textual concepts in a social media domain and observe a significant improvement from using a concept-based solution for keyword searching. We address the problem of time-complexity that is a critical issue for concept-based methods by focusing on optimization to enable larger and more real-world style applications.

Semantic indexing, Concept, Social web, Word2Vec

"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)

Created from the Publication Database of the Vienna University of Technology.