Publications in Scientific Journals:

J. Wang, G.K.H. Madsen, R. Drautz:
"Grain boundaries in bcc-Fe: a density-functional theory and tight-binding study";
Modelling and Simulation in Materials Science and Engineering, 26 (2018), 025008; 1 - 23.

English abstract:
Grain boundaries (GBs) have a significant influence on material properties. In the present paper, we calculate the energies of eleven low- ( 13) symmetrical tilt GBs and two twist GBs in ferromagnetic bcc iron using first-principles density functional theory (DFT) calculations. The results demonstrate the importance of a sufficient sampling of initial rigid body translations in all three directions. We show that the relative GB energies can be
explained by the miscoordination of atoms at the GB region. While the main features of the studied GB structures were captured by previous empirical interatomic potential calculations, it is shown that the absolute values of GB energies calculated were substantially underestimated. Based on DFT-calculated GB structures and energies, we construct a new d-band orthogonal tight-binding (TB) model for bcc iron. The TB model is validated by its predictive power on all the studied GBs. We apply the TB model to block boundaries in lath martensite and demonstrate that the experimentally observed GB character distribution can be explained from the viewpoint of interface energy. Keywords: Grain boundaries, Interface energy, Density functional theory (DFT), Iron, Martensite

"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)

Created from the Publication Database of the Vienna University of Technology.