Publications in Scientific Journals:

S. Hagmair, M. Bachler, M. Braunisch, G. Lorenz, C. Schmaderer, A. Hasenau, L. von Stülpnagel, A. Bauer, K. Rizas, S. Wassertheurer, C. Mayer:
"Challenging Recently Published Parameter Sets for Entropy Measures in Risk Prediction for End-Stage Renal Disease Patients";
Entropy, 19 (2017), 11; 1 - 13.

English abstract:
Abstract: Heart rate variability (HRV) analysis in a non-invasive tool for assessing cardiac health. Entropy measures quantify the chaotic properties of HRV, but they are sensitive to the choice of their required parameters. Previous studies therefore have performed parameter optimization, targeting solely their particular patient cohort. In contrast, this work aimed to challenge entropy measures with recently published parameter sets, without time-consuming optimization, for risk prediction in end-stage renal disease patients. Approximate entropy, sample entropy, fuzzy entropy, fuzzy measure entropy, and corrected approximate entropy were esamined. In total, 265 hemodialysis patients from the ISAR (rlSk strAtification in end-stage Renal disease) study were analyzed. Throughout a median follow-up time of 53 month, 70 patients died. Fuzzy entropy and corrected approximate entropy (CApEn) provided significant hazard ratios, which remaind significant after adjustment for clinical risk factors from literature if an entropy maximizing threshold parameter was chosen. Revealing results were seen in the subgroup of patients with heart disease (HD) when setting the radius to a multiple of the data's standard deviation; all entropies, except CApEN, predicted mortality significantly and remained significant after adjustment. Therefore, these two parameter settings seem to reflect different cardiac properties. This work shows the potential of entropy maesures for cardiovascular risk stratification in cohorts the parameters were not optimized for,and it provides additional insights into the parameter choice.

"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)

Created from the Publication Database of the Vienna University of Technology.