[Back]


Publications in Scientific Journals:

M. Kilian, A. Monszpart, N. Mitra:
"String Actuated Curved Folded Surfaces";
ACM Transactions on Graphics, 36,3 (2017), 25.



English abstract:
Curved folded surfaces, given their ability to produce elegant freeform shapes by folding flat sheets etched with curved creases, hold a special place in computational Origami. Artists and designers have proposed a wide variety of different fold patterns to create a range of interesting surfaces. The creative process, design as well as fabrication, is usually only concerned with the static surface that emerges once folding has completed. Folding such patterns, however, is difficult as multiple creases have to be folded simultaneously to obtain a properly folded target shape. We introduce string actuated curved folded surfaces that can be shaped by pulling a network of strings thus vastly simplifying the process of creating such surfaces and making the folding motion an integral part of the design. Technically, we solve the problem of which surface points to string together and how to actuate them by locally expressing a desired folding path in the space of isometric shape deformations in terms of novel string actuation modes. We demonstrate the validity of our approach by computing string actuation networks for a range of well known crease patterns and testing their effectiveness on physical prototypes.


"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)
http://dx.doi.org/10.1145/3015460


Created from the Publication Database of the Vienna University of Technology.