[Zurück]


Zeitschriftenartikel:

J. Chen, X. Zhang, K. Hron, M. Templ, S. Li:
"Regression imputation with Q-mode clustering for rounded zero replacement in high-dimensional compositional data";
Journal of Applied Statistics, 45 (2017), 11; S. 2067 - 2080.



Kurzfassung englisch:
The logratio methodology is not applicable when rounded zeros occur in compositional data. There are many methods to deal with rounded zeros. However, some methods are not suitable for analyzing data sets with high dimensionality. Recently, related methods have been developed, but they cannot balance the calculation time and accuracy. For further improvement, we propose a method based on regression imputation with Q-mode clustering. This method forms the groups of parts and builds partial least squares regression with these groups using centered logratio coordinates. We also prove that using centered logratio coordinates or isometric logratio coordinates in the response of partial least squares regression have the equivalent results for the replacement of rounded zeros. Simulation study and real example are conducted to analyze the performance of the proposed method. The results show that the proposed method can reduce the calculation time in higher dimensions and improve the quality of results.

Schlagworte:
Compositional data, centered logratio coordinates, rounded zeros, partial least squares regression, cluster analysis


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1080/02664763.2017.1410524

Elektronische Version der Publikation:
10.1080/02664763.2017.1410524


Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.