[Zurück]


Zeitschriftenartikel:

M. Drmota, L. Ramos, J. Rué:
"Subgraph statistics in subcritical graph classes";
Random Structures and Algorithms, 51 (2017), 4; S. 631 - 673.



Kurzfassung englisch:
Let H be a fixed graph and math formula a subcritical graph class. In this paper we show that the number of occurrences of H (as a subgraph) in a graph in math formula of order n, chosen uniformly at random, follows a normal limiting distribution with linear expectation and variance. The main ingredient in our proof is the analytic framework developed by Drmota, Gittenberger and Morgenbesser to deal with infinite systems of functional equations [Drmota, Gittenberger, and Morgenbesser, Submitted]. As a case study, we obtain explicit expressions for the number of triangles and cycles of length 4 in the family of series-parallel graphs.


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1002/rsa.20721


Erstellt aus der Publikationsdatenbank der Technischen Universität Wien.