M. Baaz, A. Lolic:
"First-Order Interpolation of Non-classical Logics Derived from Propositional Interpolation";
Lecture Notes in Computer Science, 10483 (2017), S. 265 - 280.

Kurzfassung englisch:
This paper develops a general methodology to connect propositional and first-order interpolation. In fact, the existence of suitable skolemizations and of Herbrand expansions together with a propositional interpolant suffice to construct a first-order interpolant. This methodology is realized for lattice-based finitely-valued logics, the top element representing true and for (fragments of) infinitely-valued first-order G\ödel logic, the logic of all linearly ordered constant domain Kripke frames.

Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.