G. Di Gesu, D. Le Peutrec:
"Small noise spectral gap asymptotics for a large system of nonlinear diffusions";
Journal of Spectral Theory, 7 (2017), 4; 46 S.

Kurzfassung englisch:
We study the L≤ spectral gap of a large system of strongly coupled diffusions on unbounded state space and subject to a double-well potential. This system can be seen as a spatially discrete approximation of the stochastic Allen-Cahn equation on the one-dimensional torus. We prove upper and lower bounds for the leading term of the spectral gap in the small temperature regime with uniform control in the system size. The upper bound is given by an Eyring-Kramers-type formula. The lower bound is proven to hold also for the logarithmic Sobolev constant. We establish a sufficient condition for the asymptotic optimality of the upper bound and show that this condition is fulfilled under suitable assumptions on the growth of the system size. Our results can be reformulated in terms of a semiclassical Witten Laplacian in large dimension.

Spectral gap, Log-Sobolev inequality, Witten Laplacian, Metastability, Small noise asymptotics, Interacting particle system, Stochastic Allen-Cahn equation

"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)

Elektronische Version der Publikation:

Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.