[Back]


Publications in Scientific Journals:

G. Gravogl, C. Knoll, W. Artner, E. Eitenberger, G. Friedbacher, A. Werner, M. Harasek, P. Weinberger, D. Müller, R. Miletich:
"Moisture-triggered ambient-temperature carbonatization of main group II metal oxides under elevated CO2 pressure";
ISES Solar World Congress Proceedings, 1 (2017), 799 - 810.



English abstract:
The reversible reaction of metal oxides with CO2 forming metal carbonates with concomitant release of energy is considered as a promising concept for thermochemical energy storage. One major advantage of thermochemical energy storage materials is the possibility of a lossless mid-term and long-term storage of waste heat. Metal carbonates provide high-energy densities and were so far investigated for their application in high-temperature processes. Inspired by the carbonatization of (main group II) metal oxides in nature during mineralization and CO2 fixation in the presence of moisture under elevated pressures, the Me (II) oxides (Me = Mg, Ca, Sr, Ba) were investigated with respect to their reactivities with CO2 at pressures up to 55 bar and ambient temperature. Whereas
for MgO none of the applied conditions yielded any formation of a carbonate phase, the other oxides revealed appropriate reactivities by forming corresponding carbonates under considerably mild reaction conditions.

Keywords:
main group II oxides, main group II carbonates, low-temperature carbonatization, in-situ powder XRay diffraction, thermochemical energy storage


"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)
http://dx.doi.org/10.18086/swc.2017.14.01


Created from the Publication Database of the Vienna University of Technology.