Publications in Scientific Journals:

G. Gravogl, C. Knoll, Jan Welch, W. Artner, N. Freiberger, R. Nilica, E. Eitenberger, G. Friedbacher, M. Harasek, A. Werner, K. Hradil, H. Peterlik, P. Weinberger, D. Müller, R. Miletich:
"Cycle Stability and Hydration Behavior of Magnesium Oxide and Its Dependence on the Precursor-Related Particle Morphology";
Nanomaterials, 8 (2018), 795.

English abstract:
Thermochemical energy storage is considered as an auspicious method for the recycling of medium-temperature waste heat. The reaction couple Mg(OH)2-MgO is intensely investigated for
this purpose, suffering so far from limited cycle stability. To overcome this issue, Mg(OH)2, MgCO3, and MgC2O4.2 H2O were compared as precursor materials for MgO production. Depending on the precursor, the particle morphology of the resulting MgO changes, resulting in different hydration behavior and cycle stability. Agglomeration of the material during cyclization was identified as main reason for the decreased reactivity. Immersion of the spent material in liquid H2O decomposes the agglomerates restoring the initial reactivity of the material, thus serving as a regeneration step.

particle morphology; magnesium hydroxide; magnesium carbonate; magnesium oxalate; magnesium oxide; thermochemical energy storage

"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)

Created from the Publication Database of the Vienna University of Technology.