Publications in Scientific Journals:

A. Daskalova, B. Ostrowska, A. Zhelyazkova, W. Swieszkowski, A. Trifonov, H. Declercq, C. Nathala, K. Szlazak, M. Lojkowski, W. Husinsky, I. Buchvarov:
"Improving osteoblasts cells proliferation via femtosecond laser surface modification of 3D-printed poly-ε-caprolactone scaffolds for bone tissue engineering applications";
Applied Physics A: Materials Science & Processing, 124 (2018), 6; 41301 - 41315.

English abstract:
Synthetic polymer biomaterials incorporating cells are a promising technique for treatment of orthopedic injuries. To enhance
the integration of biomaterials into the human body, additional functionalization of the scaffold surface should be carried
out that would assist one in mimicking the natural cellular environment. In this study, we examined poly-ε-caprolactone
(PCL) fiber matrices in view of optimizing the porous properties of the constructs. Altering the porosity of a PCL scaffold is
expected to improve the materialīs biocompatibility, thus influencing its osteoconductivity and osteointegration. We produced
3D poly-ε-caprolactone (PCL) matrices by a fused deposition modeling method for bone and cartilage tissue engineering
and performed femtosecond (fs) laser modification experiments to improve the surface properties of the PCL construct.
Femtosecond laser processing is one of the useful tools for creating a vast diversity of surface patterns with reproducibility
and precision. The processed surface of the PCL matrix was examined to follow the effect of the laser parameters, namely
the laser pulse energy and repetition rate and the number (N) of applied pulses. The modified zones were characterized by
scanning electron microscopy (SEM), confocal microscopy, X-ray computed tomography and contact angle measurements.
The results obtained demonstrated changes in the morphology of the processed surface. A decrease in the water contact angle
was also seen after fs laser processing of fiber meshes. Our work demonstrated that a precise control of material surface
properties could be achieved by applying a different number of laser pulses at various laser fluence values. We concluded
that the structural features of the matrix remain unaffected and can be successfully modified through laser postmodification.
The cells tests indicated that the micro-modifications created induced MG63 and MC3T3 osteoblast cellular orientation. The
analysis of the MG63 and MC3T3 osteoblast attachment suggested regulation of cells volume migration.

Created from the Publication Database of the Vienna University of Technology.