Zeitschriftenartikel:
A. Cherevan, L. Deilmann, T. Weller, D. Eder, R. Marschall:
"Mesoporous Semiconductors: A New Model to Assess Accessible Surface Area and Increased Photocatalytic Activity?";
ACS Applied Energy Materials,
1
(2018).
Kurzfassung englisch:
Mesoporous photocatalysts have gained tremendous attention in the past decade by demonstrating that increased surface area and porosity can strongly improve their performance. In fact, all reports on mesoporous semiconductors corroborate this scenario. But is it possible to quantify and compare the reported advantages of the mesopores and the increased surface area between different works? In this contribution, we present a model that can evaluate the improvements in photocatalytic activity achieved by the introduction of mesoporosity independent of synthetic or test conditions. We exemplify this methodology focusing on photocatalytic hydrogen/oxygen evolution with sacrificial reagents, but also include examples of CO2 reduction and electrocatalysis. By correlating the relative increase in surface area to the relative increase in activity - in comparison to non-porous counterparts - we show that the origin of mesoporosity can have a pronounced influence on the activity enhancement and that different semiconductor materials behave quite differently. Our model can serve as a starting point for the community to extract and compare key information on mesoporous photocatalysts, to put results into context of existing data, and to compare the performances of various catalytic systems much better.
Schlagworte:
CO2 reduction, hydrogen generation, mesoporous materials, photocatalysis, porosity, templating
"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1021/acsaem.8b01123
Erstellt aus der Publikationsdatenbank der Technischen Universität Wien.