Talks and Poster Presentations (with Proceedings-Entry):

P. Tulala, H. Mahyar, E. Ghalebi, R. Grosu:
"Unsupervised Wafermap Patterns Clustering via Variational Autoencoders";
Talk: IEEE International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil; 2018-07-08 - 2018-07-13; in: "Proc. of IJCNN 2018: International Joint Conference on Neural Networks", IEEE, (2018), ISSN: 2161-4407; 1 - 8.

English abstract:
Semiconductor manufacturing processes are prone to process deviations or other production issues. Quality assurance of every processing step and measuring wafer test values is crucial for finding possible root causes of these problems. Automated visual inspection and recognition of patterns in wafermap data obtained during different processing steps has a potential to signifficantly improve the efficiency of finding early production issues and even help with adjustment of the production parameters to automatically resolve them. In this paper, we present a machine learning approach for unsupervised clustering of spatial patterns in wafermap measurement data. Measured test values are first pre-processed using some computer vision techniques, followed by a feature extraction based on variational autoencoders to decompose high-dimensional wafermaps into a low-dimensional latent representation. Final step is to detect the structure of this latent space and assign individual wafers into clusters. We experimentally evaluate the performance of the proposed method over a real dataset.

"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)

Created from the Publication Database of the Vienna University of Technology.