[Zurück]


Zeitschriftenartikel:

S. Benter, V. Dubrovskii, M. Bartmann, A. Campo, I. Zardo, M. Sistani, M. Stöger-Pollach, S. Lancaster, H. Detz, A. Lugstein:
"Quasi One-Dimensional Metal−Semiconductor Heterostructures";
Nano Letters, 19 (2019), 6; S. 3892 - 3897.



Kurzfassung englisch:
The band offsets occurring at the abrupt heterointerfaces of suitable material combinations offer a powerful design tool for high performance or even new kinds of devices. Because of a large variety of applications for metal-semiconductor heterostructures and the promise of low-dimensional systems to present exceptional device characteristics, nanowire heterostructures gained particular interest over the past decade. However, compared to those achieved by mature two-dimensional processing techniques, quasi one-dimensional (1D) heterostructures often suffer from low interface and crystalline quality. For the GaAs-Au system, we demonstrate exemplarily a new approach to generate epitaxial and single crystalline metal-semiconductor nanowire heterostructures with atomically sharp interfaces using standard semiconductor processing techniques. Spatially resolved Raman measurements exclude any significant strain at the lattice mismatched metal-semiconductor heterojunction. On the basis of experimental results and simulation work, a novel self-assembled mechanism is demonstrated which yields one-step reconfiguration of a semiconductor-metal core-shell nanowire to a quasi 1D axially stacked heterostructure via flash lamp annealing. Transmission electron microscopy imaging and electrical characterization confirm the high interface quality resulting in the lowest Schottky barrier for the GaAs-Au system reported to date. Without limiting the generality, this novel approach will open up new opportunities in the syntheses of other metal-semiconductor nanowire heterostructures and thus facilitate the research of high-quality interfaces in metal-semiconductor nanocontacts.


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1021/acs.nanolett.9b01076

Elektronische Version der Publikation:
https://publik.tuwien.ac.at/files/publik_281234.pdf


Erstellt aus der Publikationsdatenbank der Technischen Universität Wien.