Publications in Scientific Journals:

C. Bors, T. Gschwandtner, S. Miksch:
"Capturing and Visualizing Provenance From Data Wrangling";
IEEE Computer Graphics and Applications, 39 (2019), 6; 61 - 75.

English abstract:
Data quality management and assessment play a vital role for ensuring the trust in the data and its fitness-of-use for subsequent analysis. The transformation history of a data wrangling system is often insufficient for determining the usability of a dataset, lacking information how changes affected the dataset. Capturing workflow provenance along the wrangling process and combining it with descriptive information as data provenance can enable users to comprehend how these changes affected the dataset, and if they benefited data quality. We present DQProv Explorer, a system that captures and visualizes provenance from data wrangling operations. It features three visualization components: allowing the user to explore the provenance graph of operations and the data stream, the development of quality over time for a sequence of wrangling operations applied to the dataset, and the distribution of issues across the entirety of the dataset to determine error patterns.

Data integrity, Measurement, Data visualization, History, Data models, Tools, Data Wrangling, Data Cleansing, Data Quality, Quality Metrics, Data Provenance, Sensemaking

"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)

Electronic version of the publication:

Related Projects:
Project Head Silvia Miksch:
Visuelle Segmentierung und Labeling multivariater Zeitserien

Created from the Publication Database of the Vienna University of Technology.