[Zurück]


Zeitschriftenartikel:

A. Arnold, S. Jin, T. Wöhrer:
"Sharp decay estimates in local sensitivity analysis for evolution equations with uncertainties: From ODEs to linear kinetic equations";
Journal of Differential Equations, 268 (2020), 3; S. 1156 - 1204.



Kurzfassung englisch:
We review the Lyapunov functional method for linear ODEs and give an explicit construction of such functionals that yields sharp decay estimates, including an extension to defective ODE systems. As an application, we consider three evolution equations, namely the linear convection-diffusion equation, the two velocity BGK model and the Fokker-Planck equation.
Adding an uncertainty parameter to the equations and analyzing its linear sensitivity leads to defective ODE systems. By applying the Lyapunov functional construction, we prove sharp long time behavior of order , where M is the defect and μ is the spectral gap of the system. The appearance of the uncertainty parameter in the three applications makes it important to have decay estimates that are uniform in the non-defective limit.

Schlagworte:
Long time behavior Defective ODEs Kinetic equations Lyapunov functionals Uncertainty quantification Sensitivity analysis


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1016/j.jde.2019.08.047


Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.