[Zurück]


Zeitschriftenartikel:

G. Gantner, D. Praetorius:
"Adaptive IGAFEM with optimal convergence rates: T-splines";
Computer Aided Geometric Design, 81 (2020), S. 101906.



Kurzfassung englisch:
We consider an adaptive algorithm for finite element methods for the isogeometric analysis (IGAFEM) of elliptic (possibly non-symmetric) second-order partial differential equations. We employ analysis-suitable T-splines of arbitrary odd degree on T-meshes generated by the refinement strategy of [Morgenstern, Peterseim, Comput. Aided Geom. Design 34 (2015)] in 2D resp. [Morgenstern, SIAM J. Numer. Anal. 54 (2016)] in 3D. Adap- tivity is driven by some weighted-residual a-posteriori error estimator. We prove linear convergence of the error estimator (resp. the sum of energy error plus data oscillations) with optimal algebraic rates.

Schlagworte:
isogeometric analysis; T-splines; adaptivity, optimal convergence rates.


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1016/j.cagd.2020.101906


Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.