[Zurück]


Zeitschriftenartikel:

A. Hassan, F. Khalid, H. Tariq, M. Hanif, R. Ahmed, S. Rehman:
"SSCNets: Robustifying DNNs using Secure Selective Convolutional Filters.";
Ieee Design & Test, 37 (2020), S. 1 - 8.



Kurzfassung englisch:
Training data is crucial in ensuring robust neural inference, and deep neural networks (DNNs) are heavily dependent on this assumption. However, DNNs can be exploited by adversaries that facilitate various attacks. Adversarial defenses include several techniques, some of which happen during the preprocessing stages (i.e., noise filtering, etc.). This article analyzes the impact of some preprocessing filters, and proposes a selective preprocessing method which increases robustness and reduces the computational complexity.

Schlagworte:
Robustness, Image edge detection, Training data, Deep learning, Perturbation methods, Filtering, Feature extraction


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1109/MDAT.2019.2961325


Erstellt aus der Publikationsdatenbank der Technischen Universität Wien.