Publications in Scientific Journals:

S. Schwarz:
"Recursive CSI Quantization of Time-Correlated MIMO Channels by Deep Learning Classification";
IEEE Signal Processing Letters, 27 (2020), 1799 - 1803.

English abstract:
In frequency division duplex (FDD) multiple-input multiple-output (MIMO) wireless communications, limited channel state information (CSI) feedback is a central tool to support advanced single- and multi-user MIMO beamforming/precoding. To achieve a given CSI quality, the CSI quantization codebook size has to grow exponentially with the number of antennas, leading to quantization complexity, as well as, feedback overhead issues for larger MIMO systems. We have recently proposed a multi-stage recursive Grassmannian quantizer that enables a significant complexity reduction of CSI quantization. In this letter, we show that this recursive quantizer can effectively be combined with deep learning classification to further reduce the complexity, and that it can exploit temporal channel correlations to reduce the CSI feedback overhead.

CSI feedback, Grassmannian quantization, deep learning, temporal correlation

"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)

Created from the Publication Database of the Vienna University of Technology.