[Zurück]


Zeitschriftenartikel:

M. Waldner, D. Steinböck, E. Gröller:
"Interactive exploration of large time-dependent bipartite graphs";
Journal of Computer Languages, 57 (2020), 2; S. 1 - 16.



Kurzfassung englisch:
Bipartite graphs are typically visualized using linked lists or matrices, but these visualizations neither scale well nor do they convey temporal development. We present a new interactive exploration interface for large, time-dependent bipartite graphs. We use two clustering techniques to build a hierarchical aggregation supporting different exploration strategies. Aggregated nodes and edges are visualized as linked lists with nested time series. We demonstrate two use cases: finding advertising expenses of public authorities following similar temporal patterns and comparing author-keyword co-occurrences across time. Through a user study, we show that linked lists with hierarchical aggregation lead to more insights than without.

Schlagworte:
Information visualization, Bipartite graphs, Clustering, Time series data, Insight-based evaluation


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1016/j.cola.2020.100959

Elektronische Version der Publikation:
https://publik.tuwien.ac.at/files/publik_292002.pdf


Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.