Publications in Scientific Journals:

M. Lackner, A. Panholzer:
"Runs in labelled trees and mappings";
Discrete Mathematics, 343 (2020), 9; 1 - 22.

English abstract:
We generalize the concept of ascending and descending runs from permutations to rooted labelled trees and mappings, i.e., functions from the set {1, ..., n}
into itself. A combinatorial decomposition of the corresponding functional digraph together with a generating functions approach allows us to perform a joint study of ascending and descending runs in labelled trees and mappings, respectively. From the given characterization of the respective generating functions we can deduce bivariate central limit theorems for these quantities. Furthermore, for ascending runs (or descending runs) we gain explicit enumeration formulæ showing a connection to Stirling numbers of the second kind. We also give a bijective proof establishing this relation, and further state a bijection between mappings and labelled trees connecting the quantities in both structures.

"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)

Electronic version of the publication:

Created from the Publication Database of the Vienna University of Technology.