[Zurück]


Zeitschriftenartikel:

E. Aschauer, T. Wojcik, P. Polcik, O Hunold, M. Arndt, V. Dalbauer, P.H. Mayrhofer, P. Felfer, H. Riedl:
"Ultra-high oxidation resistance of nano-structured thin films";
Materials & Design, 201 (2021), 109499; S. 1 - 11.



Kurzfassung englisch:
Diffusion driven high-temperature oxidation is one of the most important failure mechanisms of protective thin films in industrial applications. Within this study, we investigated the diffusion of oxygen at 800 to 1100 °C through nano-laminated crystalline Ti-Al-N and amorphous Mo-Si-B based multilayer coatings. The most prominent oxygen diffusion pathways, and hence the weakest points for oxidation, were identified by combining 18O tracer diffusion and atom probe tomography. An oxygen inward diffusion along column boundaries within Ti-Al-N layers in front of a visually prevalent oxidation front could be proven, highlighting the importance of these fast diffusion pathways. Furthermore, the amorphous Mo-Si-B layers act as barriers and therefore mitigate the migration of oxygen by accumulating reactive O species at a nanoscale range. Preventing oxygen diffusion along column boundaries - through the implementation of amorphous interlayers - lead to paralinear oxidation behavior and stable scales even after 7 h at 1100 °C. Our results provide a detailed insight on the importance of morphological features such as grain and column boundaries during high-temperature oxidation of protective thin films, in addition to their chemistry.

Schlagworte:
Oxidation Mechanism; Ti-Al-N; Fast Diffusion Pathways; APT; Tracer Diffusion


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1016/j.matdes.2021.109499

Elektronische Version der Publikation:
https://publik.tuwien.ac.at/files/publik_298109.pdf



Zugeordnete Projekte:
Projektleitung Helmut Riedl:
CDL-SEC


Erstellt aus der Publikationsdatenbank der Technischen Universität Wien.