Publications in Scientific Journals:

P. Donta, T. Amgoth, C. Annavarapu:
"Delay-aware data fusion in duty-cycled wireless sensor networks: A Q-learning approach";
Sustainable Computing-Informatics & Systems, Volume 33 (2022), 100642: 1 - 100642: 15.

English abstract:
In wireless sensor networks (WSNs), the sensor nodes (SNs) are deployed to acquire the data from the area of interest and transmit it to the sink via multi-hop communications. Due to computation, buffer, and energy constraints, the SNs need efficient routing to forward the data in time to sink with limited energy drain, and it is a challenging task. It is more difficult in duty-cycled WSNs because the SNs are active for a limited time and inactive in the remaining time to minimize the energy drain. In this context, we propose a delay-aware data fusion (DADF) approach to the trade-off between the delay and energy while performs the data fusion. Initially, the DADF performing the data fusion operation to avoid duplicating and inconsistent data at each SNs using a simple statistical approach during its active state. Afterward, the sink uses reinforcement learning to identify the best forwarding node of each SN for data communications with minimum delay and energy in duty-cycled WSNs. Each forwarding node operates the data fusion once if it acquires the data from its child nodes. The proposed method using various performance metrics such as network lifetime, throughput, energy consumption, buffer utilization, and end-to-end delay are compared with recent and relevant existing techniques, and our methods outperform them in varying dynamic conditions.

Data fusion, Delay-aware, Duty-cycle, Internet of Things, Network lifetime, Q-learning, Throughput, Wireless sensor networks

"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)

Created from the Publication Database of the Vienna University of Technology.